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Foster Wheeler Global Power Group

* Established in 1884, known as Foster Wheeler since 1927.
 Foster Wheeler is a global engineering and construction contractor and power equipment supplier.
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World Leader in Fluidized Bed Combustion Technology

* First BFB boilers delivered in the 1970s, and first CFB supplied in 1979,

» World's first once-through supercritical CFB (460MW,) started operation in 2009 in L.agisza, Poland.
* 600 MW is commercially available; the 800 MW is under design.

* Flexi-Burn™ - air/oxy flexible CFB commercially available by the of end 2011/12.

Power Output of Foster Wheeler CFB Units

(4]

(=]

o
N

SECOND * CFB fuel flexibility and multifuel capability
GENERATION OTU CFB
g 400 or provide for efficient utilization of fossile and
=
z 300 renewable fuels.
@ . . .
gzoo * Meets tough emission regulations without
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« 372 CFB, 136 BFB & 11 atmospheric gasifiers
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The Compostilla Project

OXYCFB300

* The OXYCFB300 Project within the EEPR Program is devoted to demonstrate the CCS value.
* Design phase 2009-2012 period, by mid-2012 the Investment Decision (FID) for the construction phase.
» A consortium between ENDESA GENERACION, CIUDEN and FWEOy.

Co-financed by the European Union

European Energy Programme for Recovery

Flexi-Burn™ CFB power plant

N, (Ar)

Flue gas recycle

A 4

Fuels | Flexi-Burn Flue gas | co,/
— | CFB boiler cleaning | H,O %

4‘

FOSTEF{@WHEELEF{



Evolution of co-ordinated control
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Evolution of co-ordinated control — technology driven
(Focusing on CFB and OTU)

1924 1949 1979 2009
Benson OTU 1st subcrit OTU 1t CFB 1t SC CFB OTU (rw)
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1933 tstsupercrit OTU || 2990 1l sc oxy cFB OTU
Sliding pressure || (300bari600C, Siemens) PC OTU (FW)

First concept of co-ordinated control: for once-through boilers in late 1950’s
(Eddystone, 2x300MW by Leeds & Northtrup Company, USA, nowadays Metso)
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Evolution of co-ordinated control — requirements

* Balance between the turbine power generation and the load demand.
« Balance between the boiler and turbine.

« Balance between heat release and feed water supply.

« Balance between fuel and air/oxygen feeding.

* Fast load change (4%MCR/min) and grid frequency support even in large OTU plants
(460MW,)

» Effect of parallel development (varying dominance) of drum and OTU boilers.
* Via the Metso’s co-ordinated control development.




Evolution of co-ordinated control — 1st attempt

1st attempt (Eddystone, 2x300MW coal fired plant, grid frequency control):
common demand for boiler and turbine control calculated based on the generation error
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Evolution of co-ordinated control — 1st generation
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Evolution of co-ordinated control — 2"d-3rd generations
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Evolution of co-ordinated control — 4t" generation
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Co-ordinated control for OTU boilers

* Challenges in once-through boilers:
* lack of drum and stored energy
« sliding pressure operation (small throttling reserve)
» fast load change requirement (4%MCR/min) and grid frequency support even for large plants
» S-shape load curve versus close-to-MW requirement
* Feed forward control concept
» Qverfiring the boiler
« Utilisation of BOP system: power forcing control concept
« Challenges in oxy-combustion: integration of ASU + CFB + CPU

* Examples:
» Siemens, Metso DEB, AF consulting: Balance+, ABB MODACOND, MPC control




Conventional control
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SIEMENS’s Advanced Process Controller
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METSO’s DEB control for once-through boilers
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AF - Consulting: Balance+

The needed temperature drop ATg can be calculated by using the incoming steam temperature T,, the
adaptive superheating grade and the target temperature T,,qp The calculation model calculates the
corresponding amount of spray water to steam temperature drop.

5.0 The temperature controller is used for updating the

T, —l ? model and for temperature fine tuning.
% Pl | Tempersture Real-time response to disturbances in incoming

. ([3— Pl steam temperature and steam flow.
oy oy Ideal behavior in spite of decline in the heat
Ty $—={ Calculation model | transfer efficiency or change in the operation point.
@ Vi Temperature stresses to superhea-ters and
OB stresses to the actuators are minimized.
;Q : u Steam production is stabilized.
=/




AF - Consulting: Balance+ for OTU boiler

e The ratio between the feed water and the
F ofter evoporator | ¢ combustion power is updated using the steam
temperature after the evaporator. There are
less stresses caused to boiler when the
E () f(x) “‘water/fire” balance is correct during the load
_ ve| s w| e s| e transients.

Steam pressure

o) Pl The following advantages can be gained:
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ABB’s MODAN
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ABB’s MODAKOND
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Fast power reserves — condensate throttling (power forcing)
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METSO’s MPC
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SUMMARY

» Evolution of co-ordinated control

* Technology and demand driven

* Drum and once throug boilers

* Priority between pressure and turbine power

 Demanding operational requirements for large power plants
* Feedforward control + local feedback control loops
 Utilisation of boiler overfiring and power forcing
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Thank you!

Jeno.Kovacs@fwfin.fwc.com
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