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Foster Wheeler Global Power Group

• Established in 1884, known as Foster Wheeler since 1927.
• Foster Wheeler is a global engineering and construction contractor and power equipment supplier.
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World Leader in Fluidized Bed Combustion Technology

• First BFB boilers delivered in the 1970s, and first CFB supplied in 1979.
• World’s first once-through supercritical CFB (460MWe) started operation in 2009 in Łagisza, Poland.World s first once through supercritical CFB (460MWe) started operation in 2009 in Łagisza, Poland.
• 600 MW is commercially available; the 800 MW is under design.
• Flexi-Burn™ - air/oxy flexible CFB commercially available by the of end 2011/12.

• CFB fuel flexibility and multifuel capability
provide for efficient utilization of fossile and
renewable fuels.

• Meets tough emission regulations withoutMeets tough emission regulations without
additional flue gas cleaning systems.

• 372 CFB, 136 BFB & 11 atmospheric gasifiers



• The OXYCFB300 Project within the EEPR Program is devoted to demonstrate the CCS value.

• Design phase 2009 2012 period  by mid 2012 the Investment Decision (FID) for the construction phase• Design phase 2009-2012 period, by mid-2012 the Investment Decision (FID) for the construction phase.

• A consortium between ENDESA GENERACIÓN, CIUDEN and FWEOy.
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Evolution of co-ordinated control



Evolution of co-ordinated control – technology driven
(Foc sing on CFB and OTU)(Focusing on CFB and OTU)
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First concept of co-ordinated control: for once-through boilers in late 1950’s 
(Eddystone  2x300MW by Leeds & Northtrup Company  USA  nowadays Metso)(Eddystone, 2x300MW by Leeds & Northtrup Company, USA, nowadays Metso)



Evolution of co-ordinated control – requirements

• Balance between the turbine power generation and the load demand.p g
• Balance between the boiler and turbine.
• Balance between heat release and feed water supply.

Balance between fuel and air/oxygen feeding• Balance between fuel and air/oxygen feeding.

• Fast load change (4%MCR/min) and grid frequency support even in large OTU plants
(460MWe)

• Effect of parallel development (varying dominance) of drum and OTU boilers.p p ( y g )
• Via the Metso’s co-ordinated control development.



Evolution of co-ordinated control – 1st attempt

1st attempt (Eddystone, 2x300MW coal fired plant, grid frequency control): 
common demand for boiler and turbine control calculated based on the generation error
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Evolution of co-ordinated control – 1st generation
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Evolution of co-ordinated control – 2nd-3rd generations
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Evolution of co-ordinated control – 4th generation
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Co-ordinated control for OTU boilers

• Challenges in once-through boilers:
• lack of drum and stored energy
• sliding pressure operation (small throttling reserve)
• fast load change requirement (4%MCR/min) and grid frequency support even for large plants• fast load change requirement (4%MCR/min) and grid frequency support even for large plants
• S-shape load curve versus close-to-MW requirement

• Feed forward control concept
• Overfiring the boiler
• Utilisation of BOP system: power forcing control concept
• Challenges in oxy-combustion: integration of ASU + CFB + CPUg y g

• Examples:
• Siemens Metso DEB ÅF consulting: Balance+ ABB MODACOND MPC control• Siemens, Metso DEB, ÅF consulting: Balance+, ABB MODACOND, MPC control



Conventional control



SIEMENS’s Advanced Process Controller



METSO’s DEB control for once-through boilers
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ÅF – Consulting: Balance+

The needed temperature drop ∆TS can be calculated by using the incoming steam temperature Tin, the
adaptive superheating grade and the target temperature Tout,SP, The calculation model calculates theout,SP
corresponding amount of spray water to steam temperature drop.

The temperature controller is used for updating the
model and for temperature fine tuning.

Real-time response to disturbances in incoming
steam temperature and steam flow.

Ideal behavior in spite of decline in the heat
transfer efficiency or change in the operation point.

Temperature stresses to superhea-ters and
stresses to the actuators are minimized.

Steam production is stabilized.Steam production is stabilized.



ÅF – Consulting: Balance+ for OTU boiler

The ratio between the feed water and the
combustion power is updated using the steam
temperature after the evaporator. There are
less stresses caused to boiler when the
“water/fire” balance is correct during the load
transientstransients.

The following advantages can be gained:

Ideal real-time response of combustion power
and feed water flow during and after the load
changes.

Due to adaptive control the ”water/fire”
balance remains ideal despite changes in fuel
or changes in heat transfer efficiency.



ABB’s MODAN



ABB’s MODAKOND
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Fast power reserves – condensate throttling (power forcing)
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METSO’s MPC
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SUMMARY

• Evolution of co-ordinated control

• Technology and demand driven
• Drum and once throug boilers

P i it b t d t bi• Priority between pressure and turbine power
• Demanding operational requirements for large power plants
• Feedforward control + local feedback control loops
• Utilisation of boiler overfiring and power forcing



Thank you!

Jeno.Kovacs@fwfin.fwc.com


