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Introduction

 In the field of energy engineering where a completely 
new power plant concept is rarely developed, more often 
an existing design is adjusted to fit specific site and 
project requirements fine tuning and therefore 
optimization methods have great importance.

 Classical optimization techniques have limited scope in 
practical applications. 

 Multi-criteria and multi-objective optimization problems of 
power plants demand state of the art optimization 
methods.



PSO

 A heuristic optimization technique based 

on swarm intelligence that is inspired by 

the behavior of bird flocking or fish 

schooling.

 Developed in 1995 by James Kennedy 

(social-psychologist) and Russell Eberhart 

(electrical engineer). 



The basic principle of PSO I

 Each particle moves around in the search 

space looking for the optimum 

 Each particle has a position and a velocity.

 Each particle remembers the position it 

was in where it had its best result so far 

(its personal best)



The basic principle of PSO II

 The particles in the swarm co-operate. They 
exchange information either directly or indirectly 
about what they’ve discovered in the places they 
have visited

 The co-operation of the classical PSO is simple:
 A particle has a neighborhood associated with it.

 A particle knows the fitnesses of those in its 
neighborhood, and uses the position of the one with best 
fitness.

 This position is simply used to adjust the particle’s velocity 



Computational Implementation 

of PSO

PROBLEM STATEMENT:

D-dimensional minimization problem

 where X, as a member (particle) of the swarm is a solution 
to be optimized in a form of a D-dimensional vector. 

1 j DMin f (X), X [x ,...x ,...x ]



Classical PSO
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Classical PSO
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Flowchart of the conventional 

PSO
Initialize position X, associated velocities V , 

pbest and gbest of the population, set k=0
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Simulation

Schwefel’s problem 2.13
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Simulation 1
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Simulation 2
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Simulation 3
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Simulation 4
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Unimodal and multimodal 

benchmark functions
 Sphere Function

 Rosenbrock Function

 Rastrigin Function

 Ackley  Function

 Hybrid Composition Functions
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State of art PSO methods

 Fully informed PSO (FIPS)
 each individual is influenced by its neighbors 

 Cooperative particle swarm optimizer (CPSO-H)
 one-dimensional swarms search each dimension separately

before integrating the results by a global swarm 

 Comprehensive learning particle swarm (CLPSO)
 developed to encourage the diversity of the swarm

 Example-based learning particle swarm (ELPSO)
 developed to keep balance between diversity and convergence 

speed 

 Self-adaptive learning based particle swarm (SLPSO)
 simultaneously adopts four PSO based search strategies 



Implementation of PSO for power 

plants optimization problems I

 They are designed to help decision makers 
 It can assist process designers in the development of a cost-

effective power plant concept

 A superstructure (design case) shall be developed which 
includes a limited number of the most likely design alternatives 
with estimated values of the process variables
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Implementation of PSO for power 

plants optimization problems II

 They are created to achieve a more sufficient and more 
effective service
 It require a more specified and detailed modeling of the 

equipments (off-design case) of the operating power plant.

 The accuracy of the provided solution of the search algorithm 
heavily depends on the thermodynamic model (search space) 
created in the power plant simulation software.

 To decide the number of dimensions of the power plants 
optimization problem the number of degrees of freedom shall be 
determined which refers to the independent process variables of 
the off-design model, having impact on operating conditions. 



Which PSO shall be chosen? 

 How does a power plant search space look like and what 
propetries does it have?

 How can the convergence problems within the power 
plant simulation program be solved?
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Thank you for your attention!


