
May 23, 2011    HEEP   BalatonfuredMay 23, 2011    HEEP   Balatonfured

László I. Kiss
Université du Québec à Chicoutimi

ENERGY ASPECTS  OF  PRIMARY ALUMINUM  
PRODUCTION



May 23, 2011    HEEP   BalatonfuredMay 23, 2011    HEEP   Balatonfured L. Kiss 2

The aluminum reduction by electrolysis in the presence of 
a carbon anode

2Al2O3 + 3C = 4Al + 3CO2

1.89kg Al2O3 + 0.33kg C + 6.38kWh → 1kg Al + 1.22kg CO2

INTRODUCTION -
– energy consumption

Electrical energy consumption:
• theoretically required : 6.38 kWh/kgAl
• industry average :      15 kWh/kgAl
• best reported : 11-12 kWh/kgAl

efficiency <  50%
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Why is energy efficiency less than 50% ?

theoretically required electrical energy
actually used electrical energy

The so-called current efficiency is about 95% !

____________________actually produced metal______________________
metal corresponding to the electrical charge passing through the cell
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The process

frozen 
electrolyte 

(ledge)

alumina 
feeding
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Schema of a modern industrial cell

amperage : 200 to 500 kiloamperes number of cells in a potroom : 160- 280
power consumption per cell : 1-2 MW/cell    production of a cell : 1.5-4.0 ton/day
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Aluminium smelter 
-potroom

Tapping (syphoning)
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The solvent of the alumina, Al2O3 , is the cryolite Na3AlF6

melting   point   of   pure cryolite   is ----- 1100°C
melting point of industrial electrolytic bath 
(cryolite+alumina+additives ) -------------- 960°C

The process – temperature level 

Temperature control –
- there is no direct method available 

- the heating is the consequence of the 
production of aluminum (no independent heater)
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Electrolysis cell   - heat flux driven system

process temperature → result of a balance 
between the 

internal heat generation 
and 

heat losses through the envelope of the cell

The process – temperature level 



May 23, 2011    HEEP   BalatonfuredMay 23, 2011    HEEP   Balatonfured L. Kiss 9

Parasite heating by Joule effect – part of the 
electrical energy that does not produce metal 

Internal heat generation inside the cell

• bath resistance (electrical resistivity of the bath)
• bubble layer – additional resistance (voids)
• electrodes

• bulk resistance of solids (carbon, steel, aluminum)
• interfaces, contacts

Reversible (“splitting”) voltage drop  ≈  1.9 V
Total voltage drop of a cell ≈  4-4.5 V
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anodes and cathodes 

Connection of electrical conductors

espace

elevated temperatures, aggressive environment

carbon steel
cast iron 
sealing
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Finding appropriate refractory materials :

• temperatures up to 950-1000°C
• chemical aggression by Na+, NaF, AlF3 ions

The process – containment I. 

Internal lining : carbon aggregates, graphite
• resists well to molten aluminum
• does not resist to molten bath
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The molten bath is contained
• by the liquid metal at the bottom
• by itself, by solidified bath laterally
• by the carbon anode that is consumed, at the top

The process – containment II.  
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Ratio of bottom&top surfaces to sidewall (lateral) surface...

Heat losses of the cell

30-40%

40-45%

20-25%
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Heat balance of the reduction pots

Heat flow driven by
bath temperature

or
heat source 

role of the heat transfer coefficient

L.Kiss 14
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The sidewall freeze (“ledge”) plays a critical role in 
the protection of the cell lining

As the freeze is formed thermally, it plays a critical 
role in the energy balance of the cell

As the metal production per cell is increasing, one 
must reduce the insulating capacity of the sidewall
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Estimation of the freeze thickness
“single-channel model”  - lumped parameters

Primary input parameter:

the bath superheat ∆TS

lumped parameters – global resistances (conductances),  heat 
capacities etc.

L.Kiss
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The sensitivity of freeze thickness (thermal resistance):

Estimation of the freeze thickness
“single-channel model”  - superheat driven

How does the freeze react to the 
variation of certain parameters ?

L.Kiss 17
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Estimation of the freeze thickness
“single-channel model”  - lumped parameters
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Primary input parameter:

the rate of injected heat P

L.Kiss
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The sensitivity of freeze thickness (thermal resistance):

Estimation of the freeze thickness
“single-channel model”     - heat input driven

How does the freeze react to the 
variation of certain parameters ?
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L.Kiss
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“two-channel model”
Estimation of the freeze thickness

The global resistances   R2, RW, Rh1=Rh, Rh2 can be determined 
from the results of the numerical simulations

L.Kiss
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The sensitivities  :

where

Estimation of the freeze thickness
“two-channel model”

L.Kiss 21
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Results of mathematical modeling of the freeze profile

L.Kiss
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Freeze formation–
- validation of the thermal model

Small size 
thermo – hydraulic model

L.Kiss
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New technologies:   

•500-600 kiloamperes line current
•5-10 meters horizontal dimensions, 2-4 cm bath depth
•need for active cooling
•potential for recuperation of energy
•about 10kW/m2 heat flux density, 300-500°C temperature level

Freeze profile  -
increasing amperage

L.Kiss
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A.  Reducing internal, parasite heat generation 

1) in the liquid phase (anode-cathode distance, bubble 
layer) 

– realistic, but limited potentials

2)  in the electrodes, including the contact resistances 
- new materials, new joining methods

Conclusions 
ways to improve the energy efficiency of the aluminum reduction
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B. Recuperation of the heat losses

- from the exhaust gases – already done partially

- from the sidewall – need to find use of the heat
- space/process heat
- electricity generation, conversion 

Conclusions 
ways to improve the energy efficiency of the aluminum reduction
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C.  Removing the need to form a protective layer by 
freezing bath on the sidewall

– need to find new refractory materials

Conclusions 
ways to improve the energy efficiency of the aluminum reduction

D.  Identifying a completely new aluminum reduction 
technology

- Low temperature electrolysis
- New electrolyte to dissolve alumina
- Non-electrolytic methods
- ...
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